УДК 621.791.75

Миронова М. В.

ЗАВИСИМОСТЬ МАГНИТНЫХ СВОЙСТВ СВАРОЧНЫХ МАТЕРИАЛОВ ОТ ТЕМПЕРАТУРЫ

Уменьшить долю участия основного металла в наплавленном, повысить производительность процесса наплавки, улучшить формирование и измельчить структуру металла валика возможно с использованием продольного магнитного поля (ПРМП) при электродуговой наплавке под флюсом [1, 2].

Применение этого способа наплавки в производственных условиях сдерживается изза сложности и недостаточной изученности физических процессов, протекающих в сварочной дуге и жидком металле ванны при воздействии ПРМП.

Распределение индукции в зоне сварочной дуги применительно к процессу наплавки с воздействием ПРМП получено расчетным методом [3, 4] при допущенных постоянных значениях индукции (B) и магнитной проницаемости (μ), не зависящих от напряженности поля (H). В то же время при наплавке в ПРМП используется целая система ферромагнитных тел: сердечник соленоида, электродная (сварочная, наплавочная) проволока и изделие (основной металл). Такие магнитные характеристики указанных тел, как B(H) и $\mu(H)$ зависят от химического состава сплавов на основе железа, микроструктуры и размеров зерна и они не являются линейными. В литературе данные о зависимости B(H) для сварочных проволок отсутствуют, а для основного (листового) металла весьма немногочисленны [5] и нет данных о влиянии температуры на указанные характеристики.

Величина продольной компоненты индукции B_z у поверхности изделия под электродом, генерируемой соленоидом с ферромагнитным сердечником, существенно зависит (изменяется в несколько раз) от принятого в расчетах значений магнитной проницаемости (μ = const) для электрода и (в меньшей степени) для основного металла [3]. Для оценки расчетными методами реального распределения магнитного поля в области сварочной дуги и металла ванны необходимо знать магнитные свойства материалов, участвующих в формировании шва, а также конструктивных элементов сварочного оборудования и технологической оснастки, расположенных в области сварочной дуги и ванны, с учетом температуры их нагрева.

Целью настоящей работы явилось изучение магнитных свойств сварочных (наплавочных) проволок с учетом их нагрева применительно к процессу дуговой наплавки в ПРМП для повышения достоверности получаемых расчетных данных о строении магнитного поля в зоне сварочной дуги и жидкого металла ванны.

Как и в работе [6] кривые индукции B(H) получали с помощью метода вольтметра и амперметра (рис. 1). На исследуемый образец, имевший форму тора, наматывали намагничивающую обмотку с числом витков W_1 и измерительную обмотку с числом витков W_2 . Измеряли значения тока холостого хода I_0 амперметром PA1, напряжение U_1 — вольтметром PV1, а напряжение U_2 — вольтметром PV2.

В первичной цепи ваттметром PW измеряли мощность активных потерь P. Для регулирования тока в намагничивающей обмотке использовали регулятор напряжения PH (лабораторный автотрансформатор).

Расчет магнитной индукции в образце произведен по формуле [6]:

$$B_m = \frac{U_2}{4.44 \cdot f \cdot S \cdot W_2}, \, \text{T}\pi,$$
 (1)

где f – частота сети, Γ ц (f = 50 Γ ц); S – сечение образца, M .

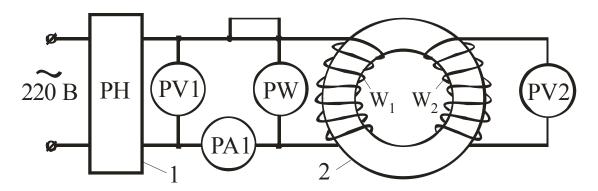


Рис. 1. Схема измерения:

1 – регулятор напряжения; 2 – исследуемый образец; PV1, PA1 – вольтметр и амперметр в первичной цепи; PW – ваттметр; PV2 – вольтметр во вторичной цепи

Максимальное (амплитудное) значение напряженности намагничивающего поля в замкнутой магнитной цепи:

$$H_m = \frac{\sqrt{2} \cdot W_1 \cdot I_0}{l_{cp}}, \text{ A/M}, \tag{2}$$

где I_0 – действующее значение намагничивающего тока, А; l_{cp} – средняя длина магнитной цепи, м.

Амплитудная проницаемость (μ) в переменном магнитном поле вычислена по формуле:

$$\overline{\mu} = \frac{B_m}{\mu_0 \cdot H_m},\tag{3}$$

где μ_0 – магнитная постоянная; $\mu_0 = 4\pi \cdot 10^{-7} \; \Gamma_{\text{H/M}}$.

Как показано в работах [5, 6], магнитные характеристики $B_m(H_m)$ и μ (H_m), получаемые по приведенной методике, практически совпадают с кривыми, получаемыми при первоначальном намагничивании образца. Погрешность полученной по такой методике индукции обычно не превышает 10 % [6]. Однако, в приведенном исследовании для уменьшения погрешности учитывали потери в образце на гистерезис и токи Фуко. При этом измеряли сопротивление первичной обмотки R_1 . Тогда мощность, затрачиваемая на нагрев обмотки, составляет $I_0^2 \cdot R_1$, а мощность, теряемая в исследуемом образце, составляет $\Delta P = P - I_0^2 \cdot R_1$.

При вычислении значений H_m по формуле (2) использованы значения реактивной составляющей тока I_{0p} , которые определены по формуле:

$$I_{0p} = \sqrt{I_0^2 - I_{0a}^2} \ . \tag{4}$$

Величина I_{0a} (активная составляющая тока) определена из выражения:

$$I_{0a} = \frac{\Delta P}{U_1} \,. \tag{5}$$

Исследования выполнены для проволок: Св-08А диаметром 4 мм, Св-08Г2С диаметром 2 мм и Нп-30ХГСА диаметром 5 мм, которые широко применяют для сварки и наплавки. Из указанных проволок изготавливали тороиды путем многослойной навивки. При этом внутренний диаметр тороидов составлял $d_{\it вн}=50$ мм, а наружный диаметр $d_{\it н}=100$ мм. Высота (толщина) пакета составляла приблизительно 20 мм. Сечение пакета проволок (тороида) составляло S=2 см 2 . Длина средней линии тороида определена по формуле:

$$l_{cp} = \pi \frac{d_H + d_{\mathcal{B}H}}{2} \,. \tag{6}$$

Обмотки W_1 и W_2 выполнены медным изолированным проводом диаметром 0,3–0,5 мм, число витков составило W_1 = 150...350; W_2 = 75.

Предварительными исследованиями установлено, что при учете потерь на нагрев тороида токами Фуко и гистерезис, значения B_m повышаются не более, чем на 5 %.

Данные исследований показали, что до значений $H_m = 5000$ А/м величина B_m максимальна для проволоки Св-08А, а минимальна — для проволоки Нп-30ХГСА. Значения B_m для проволоки Св-08Г2С являются промежуточными между указанными выше. При напряженности поля $H_m > 5000$ А/м значения B_m максимальны для проволоки Нп-30ХГСА. Эти зависимости находятся в соответствии с имеющимися представлениями о влиянии легирующих элементов на магнитные характеристики материалов [7].

Характерно также то, что в образцах (даже при значительном поле $H_m = 20000 \text{ A/m}$) не достигнуто состояние магнитного насыщения.

Поскольку в реальном процессе наплавки вылет электрода нагревается до значительных температур (до 600–700 °C) [8], для проволок диаметром 3–5 мм и обычных значениях вылетов и токов сварки), исследовали зависимости $B_m(H_m)$ для указанных материалов в диапазоне температур T=20...700 °C. При этом на исследуемые образцы (тороиды) размещали обмотки из нихромовой проволоки диаметром 0,7 и 1,0 мм. Выбор нихрома был связан с тем, что он обладает самым низким температурным коэффициентом удельного сопротивления, и в этом случае можно не учитывать поправку, связанную с изменением сопротивления R_I намагничивающей обмотки W_I (и потерь $I_0^2 \cdot R_I$) при изменении температуры. Между тороидом и намагничивающей обмоткой, а также между этой обмоткой и измерительной обмоткой (W_2) размещали (плотно навивали) слой изоляции из асбестового шнура диаметром 2,5 мм. Число обмоток при этом составляло: $W_I = 44$, $W_2 = 31$.

Для измерения температуры к тороиду конденсаторной сваркой приваривали спай хромель-алюмелевой термопары диаметром 0,2 мм. Образцы (тороиды) помещали в муфельную печь. Зависимости $B_m(H_m)$ получали измерением значений U_1 , I_0 , U_2 , P через каждые 100 °C

На рис. 2 в качестве примера приведены характерные зависимости $B_m(H_m)$, полученные при различных температурах для проволоки Cв-08A.

В области малых значений напряженности поля (H_m) с ростом температуры значения B_m возрастают (до температуры 400 °C). При температуре 400 °C в образце достигается магнитное насыщение. Если температура T > 400 °C, то с ее ростом уменьшается значение индукции насыщения. С ростом температуры уменьшались значения H_m , при которых достигается магнитное насыщение образца. Магнитные свойства проволоки Св-08A терялись (точка Кюри) при T = 730 °C (\pm 10 °C). Для других образцов точка Кюри составляла 700–750 °C. Измерениями также установлено, что после отжига образцов (нагрев до 750 °C и медленное охлаждение с печью) их магнитные свойства значительно повышались.

Эти данные необходимо учитывать в процессе наплавки с воздействием ПРМП.

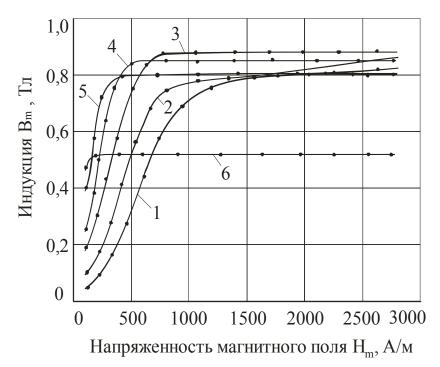


Рис. 2. Кривые намагничивания для Св-08A при температурах: 1-200 °C; 2-300 °C; 3-400 °C; 4-500 °C; 5-600 °C; 6-700 °C

выводы

Магнитное насыщение для сварочных проволок Св-08A, Св-08Г2С и Нп-30ХГСА не достигается при напряженности магнитного поля порядка 20000~A/m.

При температурах более 400 °C в исследованных материалах достигается магнитное насыщение, при этом с увеличением температуры напряженность магнитного поля, соответствующая наступлению насыщения, уменьшается.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Сварка с электромагнитным перемешиванием / [В. П. Черныш, В. Д. Кузнецов, А. Н. Брискман и др.]. Киев: Техника, 1983. 127 с.
- 2. Размышляев А. Д. Магнитное управление формированием швов при дуговой сварке / А. Д. Размышляев. Мариуполь : ПГТУ, 2000. 245 с.
- 3. Лазаренко М. А. Расчет на ЭВМ управляющих магнитных полей для процессов сварки и наплавки / М. А. Лазаренко, А. Д. Размышляев, Е. А. Чичкарев // Вестник Приазов. гос. техн. ун-та: сб. науч. тр. Мариу-поль, 1999. Вып. 8. С. 147—150.
- 4. Размышляев А. Д. Расчет индукции магнитного поля соленоида с ферромагнитным сердечником применительно к дуговой наплавке / А. Д. Размышляев, В. Р. Маевский, С. М. Сидоренко // Автоматическая сварка. -2001.-N 8. -C. 22–24.
- 5. Преображенский А. А. Магнитные материалы и элементы / А. А. Преображенский, Е. Г. Бишард. М. : Высшая школа, 1986. 352 с.
- 6. Чечерников В. И. Магнитные измерения / В. И. Чечерников. М. : Изд. Московского ун-та, $1969.-387~\mathrm{c}.$
- 7. Лившиц Б. Г. Физические свойства металлов и сплавов / Б. Г. Лившиц, В. С. Крапоткин, Я. Л. Линецкий. М. : Металлургия, 1980. 320 с.
- 8. Патон Б. Е. Процесс плавления электрода при автоматической сварке под флюсом / Б. Е. Патон // Труды по автоматической сварке под флюсом. Киев : АН УССР, 1949. \mathbb{N}^2 4.